از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند، تولید پسماندهای خطرناک نیز در پی نداشته باشد. اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت میپیوندد. اکنون بشر خود را آماده میکند تا با ساخت اولین رآکتور گرما هستهای (همجوشی هستهای) آرزوی نیاکان خود را تحقق بخشد. سوختی پاک و ارزان به نام هیدروژن انرژی تولیدی سرشار و پسماندی بسیار پاک به نامهلیوم. اکنون به واکنشهای گرما هستهای و راهکارهای استفاده از آن میپردازیم.
سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید میکند کشف کردهاند. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم. اما مشکلی سر راه این نظریه است. بالاترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر 15ضرب در 10 به توان 6 میباشد. در حالی که در ستارگان بزرگتر این دما به 20 ضرب در ده به توان 6 میرسد. به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی و تولید یک اتم هلیوم در سایر ستارگان بزرگ نیست که باعث تولید انرژی میشود.
بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه میدارد. منظور از چرخه کربن آن چرخهای نیست که روی زمین اتفاق میافتد، بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم 12C ترکیب میشود (همجوشی) و یک اتم 13N به همراه یک واحد پرتو گاما را آزاد می کند. بعد این اتم با یک واپاشی به یک اتم 13C به علاوه یک پوزیترون و یک نوترینو تبدیل میشود. بعد این 13C دوباره با یک اتم هیدروژن ترکیب میشود و 14N و یک واحد گاما حاصل میشود.
دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتم 15O و یک واحد گاما تولید میشود و 12C واپاشی کرده و 15N به علاوه یک پوزیترون و یک نوترینو را بوجود میآورد. و دست آخر با ترکیب 15N با یک هیدروژن معمولی 12C به علاوه یک اتم هلیوم بدست میآید.
دیدید که در این چرخه 12C نه مصرف شد و نه بوجود آمد، بلکه فقط نقش کاتالیزگر را داشت. این واکنشها به ترتیب و پشت سر هم انجام میشوند. و واکنش اصلی همان تبدیل چهار اتم هیدروژن به یک اتم هلیوم است. مزیت چرخه کربن این است که سرعت کار را خیلی بالا میبرد. ولی اشکالی که دارد این است که در دمای حد اقل20 ضرب در ده به توان 6 شروع میشود. بنابراین احتمال زیادی میرود که در ستارههای بزرگتر چرخه کربن باعث تولید انرژی میشود.
یک تعریف ساده و پایهای از همجوشی عبارت است از فرو رفتن هستههای چند اتم سبکتر و تشکیل یک هسته سنگینتر. مثلا واکنش کلی همجوشی که در خورشید رخ میدهد عبارت است از برخورد هستههای چهار اتم هیدروژن و تبدیل آنها به یک اتم هلیوم. تا اینجا ساده به نظر میرسد، ولی مشکلی اساسی سر راه است میدانید هسته از ذرات ریزی تشکیل شده است که پروتون و نوترون جزء لاینفک آن هستند. نوترون بدون بار و پروتون با بار مثبت که سایر بارهای مثبت را به شدت از خود میراند. مشکل مشخص شد؟ بله … اگر پروتونها (هستههای هیدروژن) یکدیگر را دفع میکنند، چگونه میتوان آنها را در همجوشی شرکت داد؟
همانطور که حدس زدید راه حل اساسی آن است که به این پروتونها آن قدر انرژی بدهیم که انرژی جنبشی آنها بیشتر از نیروی دافعه کولنی آنها شود و پروتونها بتوانند به اندازه کافی به هم نزدیک شوند. حال چگونه این انرژی جنبشی را تولید کنیم؟ گرما راه حل خوبی است. در اثر افزایش دما جنب و جوش و به عبارت دیگر انرژی جنبشی ذرات بیشتر و بیشتر میشود، بطوری که تعداد برخوردها و شدت آنها بیشتر و بیشتر میشود. به نظر شما آیا دیگر مشکلی وجود ندارد؟ خیر ، مسئله اساسیتری سر راه است.
یک سماور پر از آب را تصور کنید. وقتی سماور را روشن میکنید با این کار به آب درون سماور گرما میدهید (انرژی منتقل میکنید). در اثر این انتقال انرژی دمای آب رفته رفته بالاتر میرود و به عبارتی جنب و جوش مولکولهای آب زیاد میشود. در این حالت بین مولکولهای آب برخوردهایی پدید میآید. هر مولکول که از شعله (یا المنت یا هر چیز دیگری) مقداری انرژی دریافت کرده است آنقدر جنب و جوش میکند تا بالاخره (به علت محدود بودن محیط سماور و آب) انرژی خود را به دیگری بدهد. مولکول بعدی نیز به نوبه خود همین عمل را انجام میدهد. بدین ترتیب رفته رفته انرژی منبع گرما در تمام آب پخش میشود و دمای آب بالا میرود. آیا وقتی بدنه سماور را لمس میکنیم هیچ گرمایی حس نمی کنیم؟ …بله حس می کنیم.
دلیلش هم برخورد مولکولهای پر انرژی آب با بدنه سماور و انتقال انرژی خود به آن. هدف ما از روشن کردن سماور گرم کردن آب بود نه سماور. امیدوارم تا اینجا پاسخ اولین مشکل اساسی بر سر راه همجوشی را دریافت کرده باشید. بله اگر اگر با صرف هزینه و زحمت بالا سوخت را به دمایی معادل میلیونها درجه کلوینبرسانیم آیا این اتمها آنقدر صبر خواهند کرد تا با دیگر اتمها وارد واکنش شوند یا در اولین فرصت انرژی بالای خود را به دیواره داده و آن را نابود میکند؟ بنابراین نیاز به محصور سازی داریم، یعنی باید به طریقی اجازه ندهیم که این گرما به دیواره منتقل شود.
شروع واکنش همجوشی به دمای بسیار بالایی نیازمند است. درست است که دمای پانزده میلیون درجه دمای بسیار بالایی است و تصور بوجود آوردنش روی زمین مشکل و کمی هم وحشتناک میباشد، ولی معمولا در زندگی روزمره دور و برمان دماهای خیلی بالایی وجود دارند و ما از آنها غافلیم. مثلا وقتی در اثر اتصالی سیمهای برق داخل جعبه تقسیم میسوزد و شما صدای جرقه آنرا میشنوید و پس از بررسی متوجه میشوید که کاملا ذوب شده فقط بخاطر دمای وحشتناکی بوده که آن داخل بوجود آمده. این دما به حدود سی - چهل هزار درجه کلوین میرسد.
البته این دما برای همجوشی حکم طفل نی سواری را دارد. یا اینکه میتوانیم با استفاده از ولتاژهای بسیار بالا قوسهای الکتریکی را از درون لولههای موئین عبور بدهیم. به این ترتیب دمای هوای داخل لوله که اکنون به پلاسما تبدیل شده به نزدیک چند میلیون درجه میرسد (که باز هم برای همجوشی کم است). یکی از بهترین راهها استفاده از لیزر است. میدانید که لیزرهایی با توانهای بسیار بالا ساخته شدهاند. مثلا نوعی از لیزر به نام لیزر نوا (NOVA) میتواند در مدت کوتاهی انرژی معادل ده به توان پنج ژول تولید کند.
اما باز هم در کنار هر مزیت معایبی هست. مثلا این لیزر تبعا انرژی زیادی مصرف میکند که حتی با صرف نظر از آن مشکل دیگری هست که میگوید، اگر انرژی تولیدی لیزر در آن مدت کوتاه باید تحویل داده بشود پس برای برقرار ماندن معیار لاوسن (حالا که مدت زمان محصور سازی پایین آمده) باید چگالی بالاتر برود. که در این مورد از تراکم و چگالی جامد هم بالاتر میرود.
برای بهینه سازی کار رآکتورهای همجوشی و افزایش توان خروجی آنها راههای متعددی وجود دارد. یکی از این راهها انتخاب نوع واکنشی است که قرار است در رآکتور انجام بشود. واکنش زیر نوعی از واکنش همجوشی به صورتی است که در آن دو هسته سبک با یکدیگر واکنش داده و یک هسته سنگینتر را بوجود میآورند. یعنی حاصل ترکیب دو هسته دوتریم و تولید یک هسته ترتیم به علاوه یک هسته هیدروژن معمولی است. این واکنش انرژی ده میباشد. چون تفاوت انرژی بستگی هسته سنگینتر و هستههای سبکتر مقداری منفی است.
در این واکنش مقدار انرژی تولیدی برابر MeV4 میباشد. قبلا گفته شد که باید برای انجام همجوشی هستهها به اندازه کافی به هم نزدیک بشوند. این مقدار کافی حدودا معادل 3 fm میباشد. چون در این فاصلهها انرژی پتانسیل الکتروستاتیکی دو دوترون در حدود MeV 0.5 هست پس میتوانیم با این مقدار انرژی دادن به یکی از دوترونها دافعه کولنی بین دوترونها شکسته و واکنش را شروع کنیم که بعد از انجام مقدار MeV 4.5 تولید می شود (MeV 0.5 انرژی جنبشیبه علاوه 4 MeV انرژی آزاد شده).
زنجیره پروتون_پروتون پروتونها جهت تشکیل اتمهای هلیوم پیچیدهتر تصادم میکنند و گداخته میشوند. در این فرآیند آنها ذراتی پر انرژی نظیر نوترینو ، پوزیترون و فوترون آزاد میکنند. |
میتوانیم رآکتور خود را طوری طراحی کنیم که دور دیواره بیرونی آن لیتیوم مایع تحت فشار جریان داشته باشد. این لیتیوم مایع گرمای تولیدی اضافی را از واکنش گرفته و به آب منتقل میکند و با تبدیل آن به بخار باعث میشود که توربین و ژنراتور به حرکت در آیند و برق تولید بشود.
قبلا دیدید که مقرون به صرفه ترین واکنش در راکتور همجوشی واکنش دوتریم - ترتیم است. در این واکنش دیدید که یک نوترون پر انرژی تولید میشد. این مسأله یعنی نوترون زایی میتواند سبب تضعیف بخشهایی از رآکتور شود. از طرفی برای محیط زیست و مخصوصا سلامتی کسانی که در اطراف رآکتور فعالیت میکنند بسیار مضر است. اما اگر لیتیوم را به عنوان خنک کننده داشته باشیم این جریان لیتیم همچنین نقش مهم کند کنندگی را بازی خواهد کرد. به این صورت که با نوترون اضافی تولید شده در واکنش ترکیب شده و سوخت گران قیمت و بسیار کمیاب رآکتور رو که همان تریتیوم است تولید میکند. واکنش دقیق آن به شکل زیر است. البته در این مورد باید ضخامت لیتیوم مایع در جریان حداقل یک متر باشد.